Shank2E binds NaP(i) cotransporter at the apical membrane of proximal tubule cells.
نویسندگان
چکیده
Proteins expressing postsynaptic density (PSD)-95/Drosophila disk large (Dlg)/zonula occludens-1 (ZO-1) (PDZ) domains are commonly involved in moderating receptor, channel, and transporter activities at the plasma membrane in a variety of cell types. At the apical membrane of renal proximal tubules (PT), the type IIa NaP(i) cotransporter (NaP(i)-IIa) binds specific PDZ domain proteins. Shank2E is a spliceoform of a family of PDZ proteins that is concentrated at the apical domain of liver and pancreatic epithelial cell types and is expressed in kidney. In the present study, immunoblotting of enriched plasma membrane fractions and immunohistology found Shank2E concentrated at the brush border membrane of rat PT cells. Confocal localization of Flag-Shank2E and enhanced green fluorescent protein-NaP(i)-IIa in cotransfected OK cells showed these proteins colocalized in the apical microvilli of this PT cell model. Shank2E co-immunoprecipitated with NaP(i)-IIa from rat renal cortex tissue and HA-NaP(i)-IIa coprecipitated with Flag-Shank2E in cotransfected human embryonic kidney HEK cells. Domain analysis showed that the PDZ domain of Shank2E specifically bound NaP(i)-IIa and truncation of the COOH-terminal TRL motif from NaP(i)-IIa abolished this binding, and Far Western blotting showed that the Shank2E- NaP(i)-IIa interaction occurred directly between the two proteins. NaP(i)-IIa activity is regulated by moderating its abundance in the apical membrane. High-P(i) conditions induce NaP(i)-IIa internalization and degradation. In both rat kidney PT cells and OK cells, shifting to high-P(i) conditions induced an acute internal redistribution of Shank2E and, in OK cells, a significant degree of degradation. In sum, Shank2E is concentrated in the apical domain of renal PT cells, specifically binds NaP(i)-IIa via PDZ interactions, and undergoes P(i)-induced internalization.
منابع مشابه
Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+-phosphate cotransporter NaPi-IIa in Nherf1-deficient mice.
Phosphate reabsorption in the renal proximal tubule occurs mostly via the type IIa Na(+)-phosphate cotransporter (NaP(i)-IIa) in the brush border membrane (BBM). The activity and localization of NaP(i)-IIa are regulated, among other factors, by parathyroid hormone (PTH). NaP(i)-IIa interacts in vitro via its last three COOH-terminal amino acids with the PDZ protein Na(+)/H(+)-exchanger isoform ...
متن کاملParathyroid hormone treatment induces dissociation of type IIa Na+-P(i) cotransporter-Na+/H+ exchanger regulatory factor-1 complexes.
The type IIa Na+-P(i) cotransporter (NaP(i)-IIa) and the Na+/H+ exchanger regulatory factor-1 (NHERF1) colocalize in the apical membrane of proximal tubular cells. Both proteins interact in vitro. Herein the interaction between NaP(i)-IIa and NHERF1 is further documented on the basis of coimmunoprecipitation and co-pull-down assays. NaP(i)-IIa is endocytosed and degraded in lysosomes upon parat...
متن کاملShank2 contributes to the apical retention and intracellular redistribution of NaPiIIa in OK cells.
In renal proximal tubule (PT) cells, sodium-phosphate cotransporter IIa (NaPiIIa) is normally concentrated within the apical membrane where it reabsorbs ∼70% of luminal phosphate (Pi). NaPiIIa activity is acutely regulated by moderating its abundance within the apical membrane. Under low-Pi conditions, NaPiIIa is retained within the apical membrane. Under high-Pi conditions, NaPiIIa is retrieve...
متن کاملDipeptide-induced Cl-secretion in proximal tubule cells.
During a survey of dipeptides that might be transported by the renal PEPT2 transporter in proximal tubule cells, we discovered that acidic dipeptides could stimulate transient secretory anion current and conductance increases in intact cell monolayers. The stimulatory effect of acidic dipeptides was observed in several proximal tubule cell lines that have been recently developed by immortalizat...
متن کاملPosttranscriptional regulation of the proximal tubule NaPi-II transporter in response to PTH and dietary Pi.
The rate of proximal tubular reabsorption of phosphate (Pi) is a major determinant of Pi homeostasis. Deviations of the extracellular concentration of Piare corrected by many factors that control the activity of Na-Pi cotransport across the apical membrane. In this review, we describe the regulation of proximal tubule Pi reabsorption via one particular Na-Pi cotransporter (the type IIa cotransp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 289 4 شماره
صفحات -
تاریخ انتشار 2005